کاربرد شبکه عصبی مصنوعی در شبیه‌سازی عناصر اقلیمی و پیش‌بینی سیکل خشکسالی ) مطالعه موردی: استان اصفهان(

Authors

  • جواد خوشحال دستجردی
  • سیدمحمد حسینی
Abstract:

 اربرد شبکه عصبی مصنوعی در شبیه‌سازی عناصر اقلیمی و پیش‌بینی سیکل خشکسالی ) مطالعه موردی: استان اصفهان( چکیده   در این­ پژوهش، از شبکه­های عصبی مصنوعی ( Artificial Neural Networks ) به عنوان ابزاری توانمند در مدل سازی فرآیندهای غیرخطی و نامعین، به منظور پیش­بینی سیکل خشکسالی در20 ایستگاه سینوپتیک، کلیماتولوژی و هیدرومتری استان اصفهان که حداقل20 سال آمار روزانه داشتند، استفاده شد. از نرم­افزار MATLAB-7 و در شاخه Neural Network ، برای پیش­بینی وتجزیه و تحلیل عناصراقلیمی کمک گرفته شد. ورودی مدل­های ANN ، داده­های میانگین­ماهانه بارش، دبی حداقل و دمای­بیشینه است که این داده­ها، بازه زمانی سال­های1360 تا1383 را در بر می­گیرند. اطلاعات20 ساله برای آموزش مدل ­ ها و 4 سال باقی مانده برای آزمایش آن­ها به کاررفته است. شبکه مورد استفاده از نوع پرسپترون چندلایه( Multi - layer P erceptron ) با الگوریتم پس­انتشارِخطا ( Back Propagation ) و تکنیک یادگیری مارکوارت- لونبرگ ( Train LM: Levenberg-Marquardt ) است. ساختارهای گوناگونی از شبکه عصبی با تغییر در لایه­های ورودی (6 مدل)، تعداد گره­ها در لایه­های پنهان و خروجی (2 الی20 گره) ایجاد گردید. نتایج حاصل از تحقیق حاضر، نشان می­دهد که در ­ میان الگوهای مورد بررسی، دمای­بیشینه، دبی و بارش، نقش مثبتی در پیش­بینی خشکسالی­های استان اصفهان داشته، با کاربرد شبکه عصبی مصنوعی می­توان با دقت بالای 95 درصد، سیکل خشکسالی استان را پیش­بینی نمود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی تأثیر عناصر اقلیمی بر افزایش دقت روش شبکه عصبی مصنوعی در پیش‌بینی خشک‌سالی منطقه یزد

Drought is a natural feature of the climate condition, and its recurrence is inevitable. The main purpose of this research is to evaluate the effects of climatic factors on prediction of drought in different areas of Yazd based on artificial neural networks technique. In most of the meteorological stations located in Yazd area, precipitation is the only measured factor while generally in synopt...

full text

مقایسه روش‌های شبکه عصبی مصنوعی و رگرسیون چند متغیره در پهنه‌بندی خطر زمین‌لغزش، مطالعه موردی: حوضه ونک، استان اصفهان

زمین‌­لغزش­‌ها از مهمترین خطرات طبیعی هستند که نه تنها زندگی انسان را به خطر می­‌اندازند، بلکه باعث ایجاد بار اقتصادی برای جامعه می­‌شوند. با توجه به اهمیت تشخیص مناسب­‌ترین روش برآورد صحیح خطر زمین‌­لغزش، در این پژوهش میزان کارایی دو روش شبکه عصبی مصنوعی و رگرسیون چندمتغیره مقایسه شد. بدین منظور ابتدا با استفاده از عکس­‌های هوایی، تصاویر ماهواره­‌ای، نقشه­‌های زمین‌شناسی و بررسی‌های میدانی نقش...

full text

مقایسه‌ی شبکه عصبی و سری‌های زمانی در پیش‌بینی خشکسالی (مطالعه موردی: استان خراسان رضوی)

  جهت کاهش خسارات ناشی از خشکسالی لازم است تا شرایط آینده از نظر خشکسالی تعیین گردد. در این پژوهش عملکرد مدل­های سری­های زمانی( ARIMA ) و شبکه عصبی (پرسپترون چند لایه) در پیش­بینی مقادیر SPI مقایسه گردید. بدین منظور در ابتدا مقادیر SPI سه، شش، نه و دوازده ماهه استان خراسان رضوی تعیین کرده و سپس با استفاده از مدل­های شبکه عصبی مصنوعی و سری­های زمانی اقدام به پیش­بینی مقادیر SPI گردید. نتایج این ...

full text

کاربرد شبکه عصبی مصنوعی در حسابرسی

چکیده بسیاری از فرآیندهای حسابرسی به سرعت در حال تغییرند. یکی از مسایل مهم حسابرسی این است که چگونه فناوری اطلاعات بر فرآیند حسابرسی ومهارت‏های حسابرسی تأثیر می‏گذارد. حسابرسان باید از آمادگی‏های لازم برای فعالیت در این محیط جدید برخورار باشند. یافته‏های تازه در قلمرو فناوری اطلاعات و ارتباطات، حسابرسان را در نظارت و کنترل عملیات شرکت صاحب‎کار یاری می‏رسانند از جمله امکاناتی که در این محیط جدید...

full text

کاربرد شبکه عصبی مصنوعی در مدل‌سازی توسعه شهری (مطالعه موردی: شهر گرگان)

مدل‌های شبکه عصبی مصنوعی از مدل‌های اطلاعات‎محور به‎شمار می‎آیند. مدل تبدیل کاربری/ پوشش زمین، از مدل‎هایی است که شبکه عصبی مصنوعی را با سیستم اطلاعات جغرافیایی مرتبط می‌سازد و برای مدل‎سازی توسعه شهری در شهر گرگان در دوره زمانی سال‌های 2001-1987 از همین مدل استفاده شد. این مدل از 6 برنامه کاربردی که در برنامه MS-DOS اجرا می‎شود، تشکیل شده است. در این مطالعه، سه گروه از متغیرها شامل متغیرهای بی...

full text

کاربرد شبکة عصبی مصنوعی در پیش‌بینی و شبیه‌سازی شاخص اقلیمی خشک‌سالی هواشناسی دهک بارش (مطالعة موردی: استان سیستان و بلوچستان)

محدودیت منابع آب ناشی از خشک‌سالی‌های متوالی، از مهم‌ترین معضلات استان سیستان و بلوچستان است.در این پژوهش برای پیش‌بینی سیکل خشک‌سالی در 9 ایستگاه هواشناسی استان سیستان و بلوچستان از شبکة عصبی مصنوعی استفاده شد. داده‌های مورد استفادة ورودی شبکه شامل بارش سالانه و شاخص دهک بارش (DPI) ایستگاه‌‌ها است که از سال 1350 تا 1379 برای آموزش مدل و از سال 1380 تا 1387 برای اعتبارسنجی شبکه است. شبکة مورد ا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 3

pages  107- 120

publication date 2010-10-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023